
The future is mostly static
Or how we are reinventing the web again

Juho Vepsäläinen



What to expect

1. Introduction

2. Content Management Systems (CMSs)

3. Static Site Generation (SSG)

4. CMS and SSG compared

5. Current trends

6. Research

1



Introduction



Key points from the history of the web

• 1985 - First Content Management System (CMS) called FileNet is
invented

• 1989 - First HTML browser comes available
• 1992 - Tim Berners-Lee invents the World Wide Web (www) [4]
• ca. 1995 - First graphical editors (MS Frontpage etc.) emerge for
creation of websites

• 1995 - JavaScript is developed by Brendan Eich
• 2002 - The first Single Page Applications (SPAs) emerge
• 2015 - Jamstack is specified by Matt Biilmann [9]
• 2019 - Islands architecture is formalized [16]
• 2021 - The idea of Transitional Web Applications (TWAs) is
proposed [8]

2



Key points from the history of the web

• 1985 - First Content Management System (CMS) called FileNet is
invented

• 1989 - First HTML browser comes available

• 1992 - Tim Berners-Lee invents the World Wide Web (www) [4]
• ca. 1995 - First graphical editors (MS Frontpage etc.) emerge for
creation of websites

• 1995 - JavaScript is developed by Brendan Eich
• 2002 - The first Single Page Applications (SPAs) emerge
• 2015 - Jamstack is specified by Matt Biilmann [9]
• 2019 - Islands architecture is formalized [16]
• 2021 - The idea of Transitional Web Applications (TWAs) is
proposed [8]

2



Key points from the history of the web

• 1985 - First Content Management System (CMS) called FileNet is
invented

• 1989 - First HTML browser comes available
• 1992 - Tim Berners-Lee invents the World Wide Web (www) [4]

• ca. 1995 - First graphical editors (MS Frontpage etc.) emerge for
creation of websites

• 1995 - JavaScript is developed by Brendan Eich
• 2002 - The first Single Page Applications (SPAs) emerge
• 2015 - Jamstack is specified by Matt Biilmann [9]
• 2019 - Islands architecture is formalized [16]
• 2021 - The idea of Transitional Web Applications (TWAs) is
proposed [8]

2



Key points from the history of the web

• 1985 - First Content Management System (CMS) called FileNet is
invented

• 1989 - First HTML browser comes available
• 1992 - Tim Berners-Lee invents the World Wide Web (www) [4]
• ca. 1995 - First graphical editors (MS Frontpage etc.) emerge for
creation of websites

• 1995 - JavaScript is developed by Brendan Eich
• 2002 - The first Single Page Applications (SPAs) emerge
• 2015 - Jamstack is specified by Matt Biilmann [9]
• 2019 - Islands architecture is formalized [16]
• 2021 - The idea of Transitional Web Applications (TWAs) is
proposed [8]

2



Key points from the history of the web

• 1985 - First Content Management System (CMS) called FileNet is
invented

• 1989 - First HTML browser comes available
• 1992 - Tim Berners-Lee invents the World Wide Web (www) [4]
• ca. 1995 - First graphical editors (MS Frontpage etc.) emerge for
creation of websites

• 1995 - JavaScript is developed by Brendan Eich

• 2002 - The first Single Page Applications (SPAs) emerge
• 2015 - Jamstack is specified by Matt Biilmann [9]
• 2019 - Islands architecture is formalized [16]
• 2021 - The idea of Transitional Web Applications (TWAs) is
proposed [8]

2



Key points from the history of the web

• 1985 - First Content Management System (CMS) called FileNet is
invented

• 1989 - First HTML browser comes available
• 1992 - Tim Berners-Lee invents the World Wide Web (www) [4]
• ca. 1995 - First graphical editors (MS Frontpage etc.) emerge for
creation of websites

• 1995 - JavaScript is developed by Brendan Eich
• 2002 - The first Single Page Applications (SPAs) emerge

• 2015 - Jamstack is specified by Matt Biilmann [9]
• 2019 - Islands architecture is formalized [16]
• 2021 - The idea of Transitional Web Applications (TWAs) is
proposed [8]

2



Key points from the history of the web

• 1985 - First Content Management System (CMS) called FileNet is
invented

• 1989 - First HTML browser comes available
• 1992 - Tim Berners-Lee invents the World Wide Web (www) [4]
• ca. 1995 - First graphical editors (MS Frontpage etc.) emerge for
creation of websites

• 1995 - JavaScript is developed by Brendan Eich
• 2002 - The first Single Page Applications (SPAs) emerge
• 2015 - Jamstack is specified by Matt Biilmann [9]

• 2019 - Islands architecture is formalized [16]
• 2021 - The idea of Transitional Web Applications (TWAs) is
proposed [8]

2



Key points from the history of the web

• 1985 - First Content Management System (CMS) called FileNet is
invented

• 1989 - First HTML browser comes available
• 1992 - Tim Berners-Lee invents the World Wide Web (www) [4]
• ca. 1995 - First graphical editors (MS Frontpage etc.) emerge for
creation of websites

• 1995 - JavaScript is developed by Brendan Eich
• 2002 - The first Single Page Applications (SPAs) emerge
• 2015 - Jamstack is specified by Matt Biilmann [9]
• 2019 - Islands architecture is formalized [16]

• 2021 - The idea of Transitional Web Applications (TWAs) is
proposed [8]

2



Key points from the history of the web

• 1985 - First Content Management System (CMS) called FileNet is
invented

• 1989 - First HTML browser comes available
• 1992 - Tim Berners-Lee invents the World Wide Web (www) [4]
• ca. 1995 - First graphical editors (MS Frontpage etc.) emerge for
creation of websites

• 1995 - JavaScript is developed by Brendan Eich
• 2002 - The first Single Page Applications (SPAs) emerge
• 2015 - Jamstack is specified by Matt Biilmann [9]
• 2019 - Islands architecture is formalized [16]
• 2021 - The idea of Transitional Web Applications (TWAs) is
proposed [8]

2



Clients and a server [9]

3



Client, server, developer

4



Content Management Systems
(CMSs)



Roles in CMSs [18]

5



What is a CMS? [3]

6



Pros and cons

Pros
• Enables collaboration across
disciplines

• Allows developers to save
time by using extensions

• Many major players exist in
the ecosystem

Cons

• Often requires a server
(something to maintain)

• Not trivial to understand
• Comes sometimes with
unnecessary complexity

7



Pros and cons

Pros
• Enables collaboration across
disciplines

• Allows developers to save
time by using extensions

• Many major players exist in
the ecosystem

Cons

• Often requires a server
(something to maintain)

• Not trivial to understand
• Comes sometimes with
unnecessary complexity

7



Pros and cons

Pros
• Enables collaboration across
disciplines

• Allows developers to save
time by using extensions

• Many major players exist in
the ecosystem

Cons

• Often requires a server
(something to maintain)

• Not trivial to understand
• Comes sometimes with
unnecessary complexity

7



Pros and cons

Pros
• Enables collaboration across
disciplines

• Allows developers to save
time by using extensions

• Many major players exist in
the ecosystem

Cons
• Often requires a server
(something to maintain)

• Not trivial to understand
• Comes sometimes with
unnecessary complexity

7



Pros and cons

Pros
• Enables collaboration across
disciplines

• Allows developers to save
time by using extensions

• Many major players exist in
the ecosystem

Cons
• Often requires a server
(something to maintain)

• Not trivial to understand

• Comes sometimes with
unnecessary complexity

7



Pros and cons

Pros
• Enables collaboration across
disciplines

• Allows developers to save
time by using extensions

• Many major players exist in
the ecosystem

Cons
• Often requires a server
(something to maintain)

• Not trivial to understand
• Comes sometimes with
unnecessary complexity

7



Architecture of a headless CMS [2, 12]

8



Static Site Generation (SSG)



What is SSG? [11]

SSG is a system consisting of the following:

1. A templating language for website layout and theming.

2. A markup language for content creation (e.g., Markdown).
3. A local development server to preview and test the site before
building.

4. A compile process that builds the final site files into HTML, CSS,
and JavaScript [5]

9



What is SSG? [11]

SSG is a system consisting of the following:

1. A templating language for website layout and theming.
2. A markup language for content creation (e.g., Markdown).

3. A local development server to preview and test the site before
building.

4. A compile process that builds the final site files into HTML, CSS,
and JavaScript [5]

9



What is SSG? [11]

SSG is a system consisting of the following:

1. A templating language for website layout and theming.
2. A markup language for content creation (e.g., Markdown).
3. A local development server to preview and test the site before
building.

4. A compile process that builds the final site files into HTML, CSS,
and JavaScript [5]

9



What is SSG? [11]

SSG is a system consisting of the following:

1. A templating language for website layout and theming.
2. A markup language for content creation (e.g., Markdown).
3. A local development server to preview and test the site before
building.

4. A compile process that builds the final site files into HTML, CSS,
and JavaScript [5]

9



Building blocks of a Jamstack website [17]

10



Traditional web compared to Jamstack [13]

11



Pros and cons

Pros
• Fast page load time [14, 5]

• Scalable and resilient [14]
• Availability and security [14, 5]
• Automatic versioning [5]
• Ease of hosting [11]

Cons

• Tooling is highly developer
oriented

• Possibly high recompilation
cost

• Static by definition
(difficulties in dynamic use
cases)

12



Pros and cons

Pros
• Fast page load time [14, 5]
• Scalable and resilient [14]

• Availability and security [14, 5]
• Automatic versioning [5]
• Ease of hosting [11]

Cons

• Tooling is highly developer
oriented

• Possibly high recompilation
cost

• Static by definition
(difficulties in dynamic use
cases)

12



Pros and cons

Pros
• Fast page load time [14, 5]
• Scalable and resilient [14]
• Availability and security [14, 5]

• Automatic versioning [5]
• Ease of hosting [11]

Cons

• Tooling is highly developer
oriented

• Possibly high recompilation
cost

• Static by definition
(difficulties in dynamic use
cases)

12



Pros and cons

Pros
• Fast page load time [14, 5]
• Scalable and resilient [14]
• Availability and security [14, 5]
• Automatic versioning [5]

• Ease of hosting [11]

Cons

• Tooling is highly developer
oriented

• Possibly high recompilation
cost

• Static by definition
(difficulties in dynamic use
cases)

12



Pros and cons

Pros
• Fast page load time [14, 5]
• Scalable and resilient [14]
• Availability and security [14, 5]
• Automatic versioning [5]
• Ease of hosting [11]

Cons

• Tooling is highly developer
oriented

• Possibly high recompilation
cost

• Static by definition
(difficulties in dynamic use
cases)

12



Pros and cons

Pros
• Fast page load time [14, 5]
• Scalable and resilient [14]
• Availability and security [14, 5]
• Automatic versioning [5]
• Ease of hosting [11]

Cons
• Tooling is highly developer
oriented

• Possibly high recompilation
cost

• Static by definition
(difficulties in dynamic use
cases)

12



Pros and cons

Pros
• Fast page load time [14, 5]
• Scalable and resilient [14]
• Availability and security [14, 5]
• Automatic versioning [5]
• Ease of hosting [11]

Cons
• Tooling is highly developer
oriented

• Possibly high recompilation
cost

• Static by definition
(difficulties in dynamic use
cases)

12



Pros and cons

Pros
• Fast page load time [14, 5]
• Scalable and resilient [14]
• Availability and security [14, 5]
• Automatic versioning [5]
• Ease of hosting [11]

Cons
• Tooling is highly developer
oriented

• Possibly high recompilation
cost

• Static by definition
(difficulties in dynamic use
cases)

12



CMS and SSG compared



CMS vs. SSG

Aspect CMS SSG
Focus Collaboration across dis-

ciplines
Developer productivity

Security Needs constant mainte-
nance

Only static file server to
secure

Technical
complexity

Complex by definition Potentially very simple

Dynamic use Supported out of the box Static by definition (third
parties)

13



Current trends



Past, present, future

Source: Misko Hevery: WebApps at Scale

14

https://twitter.com/mhevery/status/1565762368050671616


Edge computing [15]

15



Transitional web applications (TWAs) [8]

• In October 2021, Rich Harris proposed the idea of TWAs [8]

• By his definition, TWAs mix ideas from SPAs and the traditional
web

• TWAs utilize SSR for fast initial loading times
• TWAs are resilient as they work without JavaScript by default
• TWAs provide consistent experience and accessibility as a
built-in feature

16



Transitional web applications (TWAs) [8]

• In October 2021, Rich Harris proposed the idea of TWAs [8]
• By his definition, TWAs mix ideas from SPAs and the traditional
web

• TWAs utilize SSR for fast initial loading times
• TWAs are resilient as they work without JavaScript by default
• TWAs provide consistent experience and accessibility as a
built-in feature

16



Transitional web applications (TWAs) [8]

• In October 2021, Rich Harris proposed the idea of TWAs [8]
• By his definition, TWAs mix ideas from SPAs and the traditional
web

• TWAs utilize SSR for fast initial loading times

• TWAs are resilient as they work without JavaScript by default
• TWAs provide consistent experience and accessibility as a
built-in feature

16



Transitional web applications (TWAs) [8]

• In October 2021, Rich Harris proposed the idea of TWAs [8]
• By his definition, TWAs mix ideas from SPAs and the traditional
web

• TWAs utilize SSR for fast initial loading times
• TWAs are resilient as they work without JavaScript by default

• TWAs provide consistent experience and accessibility as a
built-in feature

16



Transitional web applications (TWAs) [8]

• In October 2021, Rich Harris proposed the idea of TWAs [8]
• By his definition, TWAs mix ideas from SPAs and the traditional
web

• TWAs utilize SSR for fast initial loading times
• TWAs are resilient as they work without JavaScript by default
• TWAs provide consistent experience and accessibility as a
built-in feature

16



Progressive enhancement in a nutshell (2008) [7]

17



Disappearing frameworks [6]

• According to Ryan Carniato [6], disappearing frameworks come
with almost a zero cost and disappear from an application

• The starting point forms a contrast to the current breed of
frameworks that load upfront and rely on expensive hydration
for SSR

• Changing the fundamental viewpoint allows for new
architectures to emerge and it’s consistent with the idea of TWAs

18



Disappearing frameworks [6]

• According to Ryan Carniato [6], disappearing frameworks come
with almost a zero cost and disappear from an application

• The starting point forms a contrast to the current breed of
frameworks that load upfront and rely on expensive hydration
for SSR

• Changing the fundamental viewpoint allows for new
architectures to emerge and it’s consistent with the idea of TWAs

18



Disappearing frameworks [6]

• According to Ryan Carniato [6], disappearing frameworks come
with almost a zero cost and disappear from an application

• The starting point forms a contrast to the current breed of
frameworks that load upfront and rely on expensive hydration
for SSR

• Changing the fundamental viewpoint allows for new
architectures to emerge and it’s consistent with the idea of TWAs

18



Islands architecture [10]

19



Islands architecture implemented by Etsy [1]

20



Islands oriented SSGs

• Astro - Lots of integrations, interesting model for mixing
interactivity with content

• îles - Powered by Vite, supports many frameworks (Vue, React,
Preact, etc.) for islands

• Capri - Powered by Vite, live CMS integration, early release

21

https://astro.build/
https://iles.pages.dev/
https://capri.build/


Islands oriented SSGs

• Astro - Lots of integrations, interesting model for mixing
interactivity with content

• îles - Powered by Vite, supports many frameworks (Vue, React,
Preact, etc.) for islands

• Capri - Powered by Vite, live CMS integration, early release

21

https://astro.build/
https://iles.pages.dev/
https://capri.build/


Islands oriented SSGs

• Astro - Lots of integrations, interesting model for mixing
interactivity with content

• îles - Powered by Vite, supports many frameworks (Vue, React,
Preact, etc.) for islands

• Capri - Powered by Vite, live CMS integration, early release

21

https://astro.build/
https://iles.pages.dev/
https://capri.build/


Upcoming technologies

• SolidJS - React done ”right”

• Qwik - No hydration, automatic lazy loading, and more
• Nano JSX - 1 kB JSX library
• Tina - Open source editor for Next.js sites
• Contentlayer - Type-safe JSON APIs on top of Markdown and
other formats

• Portable Text - Abstraction of rich text enabling creation of
editors (powers Sanity)

• Fresh - Web framework with zero runtime overhead, islands, no
build step, no configuration, oriented around (P)React

22

https://www.solidjs.com/
https://qwik.builder.io/
https://nanojsx.io/
https://tina.io/
https://www.contentlayer.dev/
https://github.com/portabletext/portabletext
https://www.sanity.io/
https://fresh.deno.dev/


Upcoming technologies

• SolidJS - React done ”right”
• Qwik - No hydration, automatic lazy loading, and more

• Nano JSX - 1 kB JSX library
• Tina - Open source editor for Next.js sites
• Contentlayer - Type-safe JSON APIs on top of Markdown and
other formats

• Portable Text - Abstraction of rich text enabling creation of
editors (powers Sanity)

• Fresh - Web framework with zero runtime overhead, islands, no
build step, no configuration, oriented around (P)React

22

https://www.solidjs.com/
https://qwik.builder.io/
https://nanojsx.io/
https://tina.io/
https://www.contentlayer.dev/
https://github.com/portabletext/portabletext
https://www.sanity.io/
https://fresh.deno.dev/


Upcoming technologies

• SolidJS - React done ”right”
• Qwik - No hydration, automatic lazy loading, and more
• Nano JSX - 1 kB JSX library

• Tina - Open source editor for Next.js sites
• Contentlayer - Type-safe JSON APIs on top of Markdown and
other formats

• Portable Text - Abstraction of rich text enabling creation of
editors (powers Sanity)

• Fresh - Web framework with zero runtime overhead, islands, no
build step, no configuration, oriented around (P)React

22

https://www.solidjs.com/
https://qwik.builder.io/
https://nanojsx.io/
https://tina.io/
https://www.contentlayer.dev/
https://github.com/portabletext/portabletext
https://www.sanity.io/
https://fresh.deno.dev/


Upcoming technologies

• SolidJS - React done ”right”
• Qwik - No hydration, automatic lazy loading, and more
• Nano JSX - 1 kB JSX library
• Tina - Open source editor for Next.js sites

• Contentlayer - Type-safe JSON APIs on top of Markdown and
other formats

• Portable Text - Abstraction of rich text enabling creation of
editors (powers Sanity)

• Fresh - Web framework with zero runtime overhead, islands, no
build step, no configuration, oriented around (P)React

22

https://www.solidjs.com/
https://qwik.builder.io/
https://nanojsx.io/
https://tina.io/
https://www.contentlayer.dev/
https://github.com/portabletext/portabletext
https://www.sanity.io/
https://fresh.deno.dev/


Upcoming technologies

• SolidJS - React done ”right”
• Qwik - No hydration, automatic lazy loading, and more
• Nano JSX - 1 kB JSX library
• Tina - Open source editor for Next.js sites
• Contentlayer - Type-safe JSON APIs on top of Markdown and
other formats

• Portable Text - Abstraction of rich text enabling creation of
editors (powers Sanity)

• Fresh - Web framework with zero runtime overhead, islands, no
build step, no configuration, oriented around (P)React

22

https://www.solidjs.com/
https://qwik.builder.io/
https://nanojsx.io/
https://tina.io/
https://www.contentlayer.dev/
https://github.com/portabletext/portabletext
https://www.sanity.io/
https://fresh.deno.dev/


Upcoming technologies

• SolidJS - React done ”right”
• Qwik - No hydration, automatic lazy loading, and more
• Nano JSX - 1 kB JSX library
• Tina - Open source editor for Next.js sites
• Contentlayer - Type-safe JSON APIs on top of Markdown and
other formats

• Portable Text - Abstraction of rich text enabling creation of
editors (powers Sanity)

• Fresh - Web framework with zero runtime overhead, islands, no
build step, no configuration, oriented around (P)React

22

https://www.solidjs.com/
https://qwik.builder.io/
https://nanojsx.io/
https://tina.io/
https://www.contentlayer.dev/
https://github.com/portabletext/portabletext
https://www.sanity.io/
https://fresh.deno.dev/


Upcoming technologies

• SolidJS - React done ”right”
• Qwik - No hydration, automatic lazy loading, and more
• Nano JSX - 1 kB JSX library
• Tina - Open source editor for Next.js sites
• Contentlayer - Type-safe JSON APIs on top of Markdown and
other formats

• Portable Text - Abstraction of rich text enabling creation of
editors (powers Sanity)

• Fresh - Web framework with zero runtime overhead, islands, no
build step, no configuration, oriented around (P)React

22

https://www.solidjs.com/
https://qwik.builder.io/
https://nanojsx.io/
https://tina.io/
https://www.contentlayer.dev/
https://github.com/portabletext/portabletext
https://www.sanity.io/
https://fresh.deno.dev/


Research



Research questions

1. What are the main benefits and limitations of CMSs and SSGs?

2. What are the means in which SSGs could address their
limitations compared to CMSs?

3. What could the future of SSGs look like?

23



Research questions

1. What are the main benefits and limitations of CMSs and SSGs?
2. What are the means in which SSGs could address their
limitations compared to CMSs?

3. What could the future of SSGs look like?

23



Research questions

1. What are the main benefits and limitations of CMSs and SSGs?
2. What are the means in which SSGs could address their
limitations compared to CMSs?

3. What could the future of SSGs look like?

23



Research plan

• By nature, design science fits the problem well

• Besides literature review, the idea is to:

1. Interview practitioners and tool authors to understand how they
view the field

2. Construct a model of what SSGs with a high amount of dynamism
could look like

3. Implement a tool to try out the ideas in practice (Gustwind, in
progress)

24



Research plan

• By nature, design science fits the problem well
• Besides literature review, the idea is to:

1. Interview practitioners and tool authors to understand how they
view the field

2. Construct a model of what SSGs with a high amount of dynamism
could look like

3. Implement a tool to try out the ideas in practice (Gustwind, in
progress)

24



Research plan

• By nature, design science fits the problem well
• Besides literature review, the idea is to:

1. Interview practitioners and tool authors to understand how they
view the field

2. Construct a model of what SSGs with a high amount of dynamism
could look like

3. Implement a tool to try out the ideas in practice (Gustwind, in
progress)

24



Research plan

• By nature, design science fits the problem well
• Besides literature review, the idea is to:

1. Interview practitioners and tool authors to understand how they
view the field

2. Construct a model of what SSGs with a high amount of dynamism
could look like

3. Implement a tool to try out the ideas in practice (Gustwind, in
progress)

24



Research plan

• By nature, design science fits the problem well
• Besides literature review, the idea is to:

1. Interview practitioners and tool authors to understand how they
view the field

2. Construct a model of what SSGs with a high amount of dynamism
could look like

3. Implement a tool to try out the ideas in practice (Gustwind, in
progress)

24



Contribution to web engineering

1. Increased understanding of the current state of the art

2. Understanding of what SSG could look like when combined with
ideas and constraints from the CMS world

3. Creation of tooling for the next generation of web developers to
bridge the gap

25



Contribution to web engineering

1. Increased understanding of the current state of the art
2. Understanding of what SSG could look like when combined with
ideas and constraints from the CMS world

3. Creation of tooling for the next generation of web developers to
bridge the gap

25



Contribution to web engineering

1. Increased understanding of the current state of the art
2. Understanding of what SSG could look like when combined with
ideas and constraints from the CMS world

3. Creation of tooling for the next generation of web developers to
bridge the gap

25



Thank you!

25



Time for your questions

25



References i

Etsy engineering: Mobius: Adopting jsx while prioritizing user
experience, 2021.

J. Attardi.
Introduction to netlify cms.
In Using Gatsby and Netlify CMS, pages 1–12. Springer, 2020.

C. Benevolo and S. Negri.
Evaluation of content management systems (cms): a supply
analysis.
Electronic Journal of Information Systems Evaluation,
10(1):pp9–22, 2007.

T. Berners-Lee, R. Cailliau, J.-F. Groff, and B. Pollermann.
World-wide web: the information universe.
Internet Research, 1992.



References ii

R. Camden and B. Rinaldi.
Working with Static Sites: Bringing the Power of Simplicity to
Modern Sites.
” O’Reilly Media, Inc.”, 2017.

R. Carniato.
Understanding transitional javascript apps, Nov 2021.
A. Gustafson, L. Overkamp, P. Brosset, S. V. Prater, M. Wills, and
E. PenzeyMoog.
Understanding progressive enhancement, Oct 2008.
R. Harris.
Have single-page apps ruined the web? | transitional apps with
rich harris, nytimes, Oct 2021.



References iii

S. Kumar.
A review on client-server based applications and research
opportunity.
International Journal of Recent Scientific Research,
10(7):33857–3386, 2019.
J. Miller.
Islands architecture, 2020.
K. Newson.
Tools and workflows for collaborating on static website
projects.
Code4Lib Journal, (38), 2017.
E. O. Obaseki et al.
Micro-frontends for Web Content Management Systems.
PhD thesis, Covenant University, 2021.



References iv

S. Peltonen, L. Mezzalira, and D. Taibi.
Motivations, benefits, and issues for adopting micro-frontends:
a multivocal literature review.
Information and Software Technology, 136:106571, 2021.

H. Petersen.
From static and dynamic websites to static site generators.
university of TARTU, Institute of Computer Science, 2016.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu.
Edge computing: Vision and challenges.
IEEE internet of things journal, 3(5):637–646, 2016.

T. P. team.
Islands architecture, Oct 2021.



References v

J. Väänänen.
Jamstack–dynaamisesti toimiva staattinen verkkosivusto.
2019.
A. Yermolenko and Y. Golchevskiy.
Developing web content management systems–from the past to
the future.
In SHS Web of Conferences, volume 110. EDP Sciences, 2021.


	Introduction
	Content Management Systems (CMSs)
	Static Site Generation (SSG)
	CMS and SSG compared
	Current trends
	Research
	Appendix

